博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
廖雪峰Python3 学习笔记--切片、迭代、列表生成式、生成器、迭代器
阅读量:6232 次
发布时间:2019-06-21

本文共 3878 字,大约阅读时间需要 12 分钟。

一、切片

1、切片支持list,tuple和string;

2、切片的基本格式 object[start:end:step],切片结果不包含object[end];

3、倒数切片

>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
>>> L[-2:]['Bob', 'Jack']>>> L[-2:-1] ['Bob'] 二、迭代

1、判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

 
>>> from collections import Iterable>>> isinstance('abc', Iterable) # str是否可迭代 True >>> isinstance([1,2,3], Iterable) # list是否可迭代 True >>> isinstance(123, Iterable) # 整数是否可迭代 False

2、默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()

由于字符串也是可迭代对象,因此,也可以作用于for循环;

3、Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']): ... print(i, value) ... 0 A 1 B 2 C

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]: ... print(x, y) ... 1 1 2 4 3 9

三、列表生成式(List Comprehensions)

如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

>>> L = []>>> for x in range(1, 11): ... L.append(x * x) ... >>> L [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

>>> [x * x for x in range(1, 11)] [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0] [4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列

>>> [m + n for m in 'ABC' for n in 'XYZ'] ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

三层和三层以上的循环就很少用到了。

四、生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator

>>> L = [x * x for x in range(10)]>>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g 
at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以通过next()函数获得generator的下一个返回值:

>>> next(g)0>>> next(g)1>>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last): File "
", line 1, in
StopIteration

generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))>>> for n in g: ... print(n) 创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。
定义generator的另一种方法,如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

def odd():    print('step 1') yield 1 print('step 2') yield(3) print('step 3') yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()>>> next(o)step 11>>> next(o)step 2 3 >>> next(o) step 3 5 >>> next(o) Traceback (most recent call last): File "
", line 1, in
StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):... print(n) ... 1 1 2 3 5 8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

>>> g = fib(6)>>> while True: ... try: ... x = next(g) ... print('g:', x) ... except StopIteration as e: ... print('Generator return value:', e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的

 

转载于:https://www.cnblogs.com/mingshengling/p/7843337.html

你可能感兴趣的文章
php cookie
查看>>
linux下redis安装
查看>>
弃 Java 而使用 Kotlin 的你后悔了吗?| kotlin将会是最好的开发语言
查看>>
JavaScript 数据类型
查看>>
量子通信和大数据最有市场突破前景
查看>>
对‘初学者应该选择哪种编程语言’的回答——计算机达人成长之路(38)
查看>>
如何申请开通微信多客服功能
查看>>
Sr_C++_Engineer_(LBS_Engine@Global Map Dept.)
查看>>
非监督学习算法:异常检测
查看>>
jquery的checkbox,radio,select等方法总结
查看>>
Linux coredump
查看>>
Ubuntu 10.04安装水晶(Mercury)无线网卡驱动
查看>>
我的友情链接
查看>>
ElasticSearch 2 (32) - 信息聚合系列之范围限定
查看>>
VS2010远程调试C#程序
查看>>
[MicroPython]TurniBit开发板DIY自动窗帘模拟系统
查看>>
Python3.4 12306 2015年3月验证码识别
查看>>
从Handler.post(Runnable r)再一次梳理Android的消息机制(以及handler的内存泄露)
查看>>
windows查看端口占用
查看>>
Yii用ajax实现无刷新检索更新CListView数据
查看>>